119 research outputs found

    A sequential algorithm for training the SOM prototypes based on higher-order recursive equations

    Get PDF
    A novel training algorithm is proposed for the formation of Self-Organizing Maps (SOM). In the proposed model, the weights are updated incrementally by using a higher-order difference equation, which implements a low-pass digital filter. It is possible to improve selected features of the self-organization process with respect to the basic SOM by suitably designing the filter. Moreover, from this model, new visualization tools can be derived for cluster visualization and for monitoring the quality of the map

    An evolutionary algorithm for global optimization based on self-organizing maps

    Get PDF
    In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization

    A multi-objective optimization algorithm based on self-organizing maps applied to wireless power transfer systems

    Get PDF
    In this work, a new multi-objective population-based optimization algorithm is presented and tested. In this contribution, the concepts of fast non-dominating sorting and density estimation using the crowding distance are used to create a multi-objective optimization algorithm based on previous work, which is a single objective evolutionary optimization algorithm based on self-organizing maps (SOMs). The SOMs paradigm introduces a strong collaboration between neighbors solutions that improves exploitation. Furthermore, the representative power of the SOMs enhances the exploration and diversification. A state of the art benchmark approach is used to evaluate the performance of the proposed algorithm, obtaining positive results. The test problem uses an analytical model of an inductively coupled wireless power transfer system (WPT). The objective is to optimize the WPT model characteristics in order to allow simultaneous data and power transfer between the coils. The WPT design approach uses more degrees of freedom than existing techniques leading to a number of solutions where both the power signals and the data signal can coexist on the same physical channel achieving good figures of merit

    Comparison and clustering analysis of the daily electrical load in eight European countries

    Get PDF
    This paper illustrates and compares the ability of several clustering algorithms to correctly associate a given aggregate daily electrical load curve with its corresponding day of the week. In particular, popular clustering algorithms like the Fuzzy c-Means, Spectral Clustering and Expectation Maximization are compared, and it is shown that the best results are obtained if the daily data are compressed with respect to a single feature, namely the so-called “Morning Slope”. Such a feature-based clustering appears to outperform the clustering results obtained upon using other classic features, and also with respect to using other conventional compression methods, such as the Principal Component Analysis, in all the examined European countries. This result is particularly interesting, as this feature provides a direct physical interpretation that can be used to obtain insights on the structure of the daily load profiles

    A Multi-Objective Method for Short-Term Load Forecasting in European Countries

    Get PDF
    In this paper we present a novel method for daily short-term load forecasting, belonging to the class of “similar shape” algorithms. In the proposed method, a number of parameters are optimally tuned via a multi-objective strategy that minimizes the error and the variance of the error, with the objective of providing a final forecast that is at the same time accurate and reliable. We extensively compare our algorithm with other state-of-the-art methods. In particular, we apply our approach upon publicly available data and show that the same algorithm accurately forecasts the load of countries characterized by different size, different weather conditions, and generally different electrical load profiles, in an unsupervised manner

    A semi-anaytical model for the analysis of a Permanent Magnet Tubular Linear Generator

    Get PDF
    In this paper the authors introduce a semi-analytical model for the analysis and the design of a Permanent Magnet (PM) tubular linear generator intended for electrical energy generation from sea waves. The translator of the analyzed machine is constituted by axially magnetized ferrite PMs with alternating polarity and soft-magnetic pole-pieces in between; a two poles, double layer three-phase winding is located in the slots of the stator. The presented model, based on use of the Carter coefficient and of the Fourier transform in the direction of the motion, is able to take into account the end effects due to the finite length of the stator. The presence of slots and teeth is subsequently considered by some post processing calculation carried on the results of the semi-analytical model. Comparison with a Finite Element analysis and with measurements taken on a prototype has been performed to validate the presented model. The model can be easily extended to other translator typologies, e.g. to air core translator with Halbach array of NdFeB PMs

    Optimal design of EMALS based on a double-sided tubular linear induction motor

    Get PDF
    A novel evolutionary algorithm is used for the optimization of the thrust force of the stages of an electromagnetic aircraft launch system, based on a double-sided tubular linear induction motor. A semianalytical model allows for a fast and accurate prediction of all the electromagnetic quantities in the device, including the thrust force, the back electromotive force, the distribution of the induced current density, and the average magnetic flux density in the teeth. Using the semianalytical formulation, the characterization of the machine is greatly facilitated, so allowing a fast evaluation of the cost function and of the design constraint

    Wind turbine power curve estimation based on earth mover distance and artificial neural networks

    Get PDF
    A data-based estimation of the wind–power curve in wind turbines may be a challenging task due to the presence of anomalous data, possibly due to wrong sensor reads, operation halts, malfunctions or other. In this study, the authors describe a data-based procedure to build a robust and accurate estimate of the wind–power curve. In particular, they combine a joint clustering procedure, where both the wind speeds and the power data are clustered, with an Earth Mover Distance-based Extreme Learning Machine algorithm to filter out data that poorly contribute to explain the unknown curve. After estimating the cut-in and the rated speed, they use a radial basis function neural network to fit the filtered data and obtain the curve estimate. They extensively compared the proposed procedure against other conventional methodologies over measured data of nine turbines, to assess and discuss its performance

    Plug-and-Play Distributed Algorithms for Optimized Power Generation in a Microgrid

    Get PDF
    This paper introduces distributed algorithms that share the power generation task in an optimized fashion among the several Distributed Energy Resources (DERs) within a microgrid. We borrow certain concepts from communication network theory, namely Additive-Increase-Multiplicative-Decrease (AIMD) algorithms, which are known to be convenient in terms of communication requirements and network efficiency.We adapt the synchronized version of AIMD to minimize a cost utility function of interest in the framework of smart grids. We then implement the AIMD utility optimisation strategies in a realistic power network simulation in Matlab-OpenDSS environment, and we show that the performance is very close to the full-communication centralized case
    • …
    corecore